
Chapter 7
Ensemble Classifiers

August 11, 2017

Chapter 7



Learning with ensembles

Our goal is to combined multiple classifiers

Mixture of experts, e.g. 10 experts

Predictions more accurate and robust

Provide an intuition why this might work

Simplest approach: majority voting

Chapter 7



Majority voting

Majority voting refers to binary setting

Can easily generalize to multi-class: plurality voting

Select class label that receives the most votes (mode)

Chapter 7



Combining predictions: options

Train m classifiers C1, . . . ,Cm

Build ensemble using different classification algorithms (e.g.
SVM, logistic regression, etc.)

Use the same algorithm but fit different subsets of the
training set (e.g. random forest)

Chapter 7



General approach

Chapter 7



Combining predictions via majority voting

We have predictions of individual classifiers Cj and need to select
the final class label ŷ

ŷ = mode{C1(x),C2(x), . . . ,Cm(x)}

For example, in a binary classification task where class1 = −1 and
class2 = +1, we can write the majority vote prediction as follows:

C (x) = sign

[
m∑
j

Cj(x)

]
=

{
1 if

∑
j Cj(x) ≥ 0

−1 otherwise

Chapter 7



Intuition why ensembles can work better

Assume that all n base classifiers have the same error rate ε. We
can expresss the probability of an error of an ensemble can be
expressed as a probability mass function of a binomial distribution:

P(y ≥ k) =
n∑
k

(
n

k

)
εk(1− ε)n−k = εensemble

Here,
(n
k

)
is the binomial coefficient n choose k. In other words, we

compute the probability that the prediction of the ensemble is
wrong.

Chapter 7



Example

Imagine we have 11 base classifiers (n = 11) with an error rate of
0.25 (ε = 0.25):

P(y ≥ k) =
11∑
k=6

(
11

k

)
0.25k(1− 0.25)11−k = 0.034

So the error rate of the ensemble of n = 11 classifiers is much
lower than the error rate of the individual classifiers.

Chapter 7



Same reasoning applied to a wider range of error rates

Chapter 7



Voting classifier in scikit-learn

Simply instantiate several classifiers

Make a list

Pass to sklearn.ensemble.VotingClassifier(...)

API link

Chapter 7

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html


clf1 = LogisticRegression(random_state=1)

clf2 = RandomForestClassifier(random_state=1)

clf3 = GaussianNB()

estimators=[(’lr’, clf1), (’rf’, clf2), (’gnb’, clf3)]

ens_clf = VotingClassifier(estimators)

ens_clf = eclf1.fit(X, y)

Chapter 7



Boostrap aggregation (bagging)

We used the entire training set for the majority vote classifier

Here we draw bootstrap samples

In statistics, bootstrapping is any test or metric that relies
on random sampling with replacement.

Hypothesis testing: bootstrapping often used as an alternative
to statistical inference based on the assumption of a
parametric model when that assumption is in doubt

The basic idea of bootstrapping is that inference about a
population from sample data, can be modelled by resampling
with replacement the sample data and performing inference
about a sample from resampled data.

Chapter 7



Bagging

Chapter 7



Boostrapping example

Seven training examples

Sample randomly with replacement

Use each boostrap sample to train a classifier Cj

Cj is typically a decision tree

Random Forests: also use random feature subsets

Chapter 7



Bagging in scikit-learn

Instantiate a decision tree classifier

Make a bagging classifier with decision trees

Check that the accuracy is higher for the bagging classifier

PML github

Chapter 7

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch07/ch07.ipynb


Boosting

Basic idea: start with weak learners that have only a slight
performance advantage over random guessing (e.g. a decision
tree stump) and try to boost their performance by focusing on
training samples that are hard to classify

Very simple base classifiers learn from misclassified training
examples

The original boosting algorithm was formulated by Robert
Schapire in 1990

It was later refined into AdaBoost

AdaBoost (short for Adaptive Boosting) is the most common
implementation of boosting

Chapter 7



Original boosting algorithm

1 Draw a random subset of training samples d1 without
replacement from the training set D to train a weak learner C1

2 Draw second random training subset d2 without replacement
from the training set and add 50 percent of the samples that
were previously misclassified to train a weak learner C2

3 Find the training samples d3 in the training set D on which
C1 and C2 disagree to train a third weak learner C3

4 Combine the weak learners C1,C2, and C3 via majority voting

Chapter 7



AdaBoost

In contrast, AdaBoost uses the complete training set to train
the weak learners

Training samples are reweighted in each iteration to build a
strong classifier

End goal is to build a strong classifier that learns from the
mistakes of the previous weak learners in the ensemble

Chapter 7



AdaBoost algorithm

1 Set weight vector w to uniform weights where
∑

i wi = 1.
2 For j in m boosting rounds, do the following:

1 Train a weighted weak learner: Cj = train(X, y,w).
2 Predict class labels: ŷ = predict(Cj ,X).
3 Compute the weighted error rate: ε = w · (ŷ 6= y).
4 Compute the coefficient αj : αj = 0.5 log 1−ε

ε .
5 Update the weights: w := w × exp

(
− αj × ŷ × y

)
.

6 Normalize weights to sum to 1: w := w/
∑

i wi .

3 Compute the final prediction:
ŷ =

(∑m
j=1

(
αj × predict(Cj ,X)

)
> 0
)
.

Notes: For clarity, we will denote element-wise multiplication by the cross symbol (×)
and the dot product between two vectors by a dot symbol (·), respectively. Note that
the expression (ŷ == y) in step 5 refers to a vector of 1s and 0s, where a 1 is assigned
if the prediction is incorrect and 0 is assigned otherwise.

Chapter 7



Chapter 7


