
Chapter 3
A Tour of Machine Learning Classifiers Using Scikit-learn

October 7, 2021

Chapter 3



Choosing a classification algorithm

No classifier works best across all scenarios (“no free lunch”
theorem)

Always need to consider the specifics of the problem

Solving a problem within supervised ML framework:
1 Select features
2 Choose performance metrics
3 Choose classifier and optimization algorithm
4 Evaluate performance of the model
5 Tune the classifier

Chapter 3



Perceptron implementation

iPython notebook on github

Chapter 3

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch03/ch03.ipynb


Modeling class probabilities

What happens if the classes are not linearly separable?

Weights never stop updating as long as there is at least one
misclassified example in each epoch

Logistic regression is a better option

Note that despite the name this is a classification model

Chapter 3



Logistic regression model

This is a “go to” model for classification

Designed for binary classification but can be extended to
multiclass

Odds ratio
p

(1− p)

Where p is the probability of the positive class (class label
y = 1). E.g. the probability that a patient has a certain
disease.

Logit function

logit(p) = log
p

1− p

Chapter 3



Logit function

Mathematically, the logit function is the inverse of the logistic
function

An inverse function is a function that ’reverses’ another
function

I.e. if the function f applied to an input x gives a result of y ,
then applying its inverse function g to y gives the result x

Chapter 3



Modeling logit function

We model the logit function as a linear combination of
features (dot product of feature values and weights)

logit(p(y = 1|x)) = w0x0+w1x1+· · ·+wmxm =
m∑
i=0

wixi = wTx.

Where p(y = 1|x) s the conditional probability that a
particular sample belongs to class 1 given its features x

This is equivalent to expressing p as

p(y = 1|x) =
1

1 + e−wT x

Chapter 3



Logistic Sigmoid

Logistic function (aka sigmoid function)

φ(z) =
1

1 + e−z
.

S-shaped curve

Chapter 3



Relationship with Adaline

In Adaline, we used the identify function as the activation
function

In logistic regression, we instead use the sigmoid function

Chapter 3



Probability distribution over classes

Output of the sigmoid often interpreted as probability

E.g. P(y = 1|x;w) = 0.8

Probability can be converted to a binary outcome (quantizer)

ŷ =

{
1 if φ(z) ≥ 0.5

0 otherwise

Which is equivalent to the following

ŷ =

{
1 if z ≥ 0.0

0 otherwise

For many applications (e.g. weather forecasting), we want the
probability

Chapter 3



Learning the weights

Previously we minimized the sum-squared-error cost function

J(w) =
1

2

∑
i

(
φ
(
z(i)
)
− y (i)

)2

Now we need to derive the cost function for logistic regression

Define the likelihood L

L(w) = P(y|x;w) =
n∏

i=1

P
(
y (i)|x (i);w

)
L(w) =

n∏
i=1

(
φ
(
z(i)
))y (i)(

1− φ
(
z(i)
))1−y (i)

Chapter 3



Log-likelihood function

Maximize the likelihood function

L(w) = P(y|x;w)

L(w) =
n∏

i=1

P
(
y (i)|x (i);w

)
=

n∏
i=1

(
φ
(
z(i)
))y (i)(

1−φ
(
z(i)
))1−y (i)

In practice easier to deal with the natural log of this equation

l(w) = log L(w)

l(w) =
n∑

i=1

[
y (i) log

(
φ
(
z(i)
))

+

(
1−y (i)

)
log

(
1−φ

(
z(i)
))]

Easier to take derivative + fewer numerical underflow issues

Chapter 3



Cost function

Rewrite likelihood as a cost function

J(w) =
n∑

i=1

[
−y (i) log

(
φ
(
z(i)
))
−
(

1−y (i)

)
log

(
1−φ

(
z i()
))]

Can now be minimized using gradient descent

iPython notebook on github

Chapter 3

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch03/ch03.ipynb


Weight update derivation

Calculate the partial derivative of the log-likelihood function with
respect to the jth weight:

∂

∂wj
l(w) =

(
y

1

φ(z)
− (1− y)

1

1− φ(z)

)
∂

∂wj
φ(z)

Partial derivative of the sigmoid function:

∂

∂z
φ(z) =

∂

∂z

1

1 + e−1
=

1(
1 + e−z

)2
e−z =

1

1 + e−z

(
1− 1

1 + e−z

)
= φ(z)(1− φ(z)).

Chapter 3



Weight update derivation

Resubstitute ∂
∂zφ(z) = φ(z)(1− φ(z)) to obtain:(

y
1

φ(z)
− (1− y)

1

1− φ(z)

)
∂

∂wj
φ(z)

=

(
y

1

φ(z)
− (1− y)

1

1− φ(z)

)
φ(z)

(
1− φ(z)

) ∂

∂wj
z

=

(
y
(
1− φ(z)

)
− (1− y)φ(z)

)
xj

=
(
y − φ(z)

)
xj

Chapter 3



Overfitting

Sometimes model performs well on training data but does not
generalize well to unseen data (test data)

This is overfitting

If a model suffers from overfitting, the model has a high
variance

This is often caused by a model that’s too complex

Underfitting can also occur (high bias)

Underfitting is caused by a model’s not being complex enough

Both suffer from low performance on unseen data

Chapter 3



Bias-variance tradeoff

Chapter 3



Regularization

Regularization: adding information in order to solve an ill-posed
problem or to prevent overfitting. An example of an ill-posed
problem is a problem where the solution does not exist or is not
unique.

Regularization is a way to tune the complexity of the model

Regularization helps to filter out noise from training data

As a result, regularization prevents overfitting

Chapter 3



L2 regularization

The most common form of regularization is the so-called L2
regularization (sometimes also called L2 shrinkage or weight
decay):

λ

2
‖w‖2 =

λ

2

m∑
j=1

w2
j

Where λ is the so-called regularization parameter. To apply
regularization, we add the regularization term to the cost function,
which shrinks the weights (adding a zero mean gaussian prior over
the weights):

J(w) =
n∑

i=1

[
−y (i) log

(
φ(z(i))

)
−
(
1−y (i)

)
log
(
1−φ(z(i))

)]
+
λ

2
‖w‖2

Chapter 3



Weight decay

Note that the derivative of w2 with respect to w is 2w , so:

wi = wi − η
∂J

∂wi
− ηλwi

The new term (ηλwi ) coming from the regularization causes the
weight to decay in proportion to its size.

Chapter 3



Regularization parameter

We control how well we fit the training data via the
regularization parameter λ

By increasing λ, we increase the strength of regularization

Sometimes (e.g in scikit-learn), SVM terminology is used

C =
1

λ

I.e we rewrite the regularized cost function of logistic
regression:

C

[
n∑

i=1

(
−y (i) log

(
φ(z(i)

)
−
(
1−y (i)

))
log

(
1−φ(z(i))

)]
+

1

2
‖w‖2

Chapter 3



Regularization illustrated

Decreasing the value of C means increasing the regularization
strength

Can be visualized by plotting L2 regularization path for two
weights

Display weights across multiple C values

As you see, weights shrink to zero as C decreased

iPython notebook on github

Chapter 3

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch03/ch03.ipynb


Support Vector Machines

In SVMs, the optimization objective is to maximize the
margin

The margin is defined as the distance between the separating
hyperlane and the training samples that are closest to this
hyperplane (support vectors)

Intuitively, the larger the margin, the lower generalization error

Models with small margin prone to overfitting

Chapter 3



Maximum margin classification

Chapter 3



Mathematical intuition

Positive and negative hyperplanes that are parallel to the decision
boundary, which can be expressed as follows:

w0 + wTxpos = 1

w0 + wTxneg = −1

Distance between these two planes (prove it!), i.e. the margin:

2

‖w‖

Where the length of the vector w is defined as follows:

‖w‖ =

√√√√ m∑
j=1

w2
j

Chapter 3



Constrained optimization problem

Minimize:
1

2
‖w‖2

Subject to constraints that the samples are classified correctly:

w0 + wTx(i) ≥ 1 if y (i) = 1

w0 + wTx(i) < −1 if y (i) = −1

These equations say that all negative and positive samples should
fall respectively on one side of the negative and positive
hyperplanes. This can be written more compactly:

y (i)
(
w0 + wTx(i)

)
≥ 1 ∀i

Chapter 3



SVM Solution

Classsifier
f (x) = sgn(wTx + w0)

Weights

w =
N∑
i=1

αiyixi

Chapter 3



Slack variables / soft margin SVM

Source: http://www.saedsayad.com/support vector machine.htm

Chapter 3



Extending SVM to non-linearly separable cases

Need to relax the linear constraints

To ensure convergence in presense of misclassifications

Introduce slack variables ξ

wTx(i) ≥ 1− ξ(i) if y (i) = 1

wTx(i) < −1 + ξ(i) if y (i) = −1

New objective to be minimized:
1

2
‖w‖2 + C

(∑
i

ξ(i)
)

Chapter 3



Regularization in SVMs

1

2
‖w‖2 + C

(∑
i

ξ(i)
)

Large values of C - large error penalties

Small values of C - less strict about misclassifications

Parameter C controls width of the margin

I.e. C is a way to do regularization in SVMs

Chapter 3



Regularization in SVMs

Chapter 3



Exclusive OR (XOR) linear separability

Source: http://www.saedsayad.com/artificial neural network bkp.htm

Chapter 3



Generated XOR data

iPython notebook on github

Kernel methods create non-linear combinations of the original
features

Project onto a higher dimensional space where they are
separable

Mapping function φ(·)
φ(x1, x2) = (z1, z2, z3) = (x1, x2, x

2
1 + x2

2 )

Chapter 3

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch03/ch03.ipynb


Turn non-separable classess are separable

Chapter 3



Kernel trick

General blueprint:

Transform training data into a higher dimensional space via a
mapping function φ(·)
Train a linear SVM to classify the data in the new feature
space

Use the same mapping function φ(·) to transform new
(unseen) data

Classify unseen data using the linear SVM model

Chapter 3



Problem with explicit mapping

The construction of the new features is computationally
expensive

Fortunately, we have the kernel trick

Decision boundary relies on dot products in input space

Need to replace the dot product

x(i) Tx(j) by φ
(
x(i)
)T
φ
(
x(j)
)

No need to calculate this dot product explicitly

Instead, we define a kernel function:

k
(
x(i), x(j)

)
= φ

(
x(i)
)T
φ
(
x(j)
)

Chapter 3



Kernel Trick: Example

x = (x1, x2), z = (z1, z2), K (x, z) = 〈x · z〉2

K (x , z) = (x1z1 + x2z2)2 = (x2
1 z

2
1 + 2x1z1x2z2 + x2

2 z
2
2 ) =

= 〈(x2
1 ,
√

2x1x2, x
2
2 ) · (z2

1 ,
√

2z1z2, z
2
2 )〉 = 〈φ(x)φ(z)〉

Chapter 3



RBF Kernel

One of the most widely used kernels is the Radial Basis Function
kernel (RBF kernel) or Gaussian kernel:

k
(
x(i), x(j)

)
= exp

(
− ‖x

(i) − x(j)‖2

2σ2

)

This is often simplified to:

k
(
x(i), x(j)

)
= exp

(
− γ ‖x(i) − x(j)‖2

)
Here, γ = 1

2σ2 is a free parameter that is to be optimized.

Chapter 3



The term kernel can be interpreted as a similarity function
between a pair of samples

The minus sign inverts the distance measure into a similarity
score (from 0/dissimilar to 1/very similar)

Use RBF kernel to separate XOR data

Vary the γ parameter

iPython notebook on github

Chapter 3

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch03/ch03.ipynb


K-nearest neighbors

KNN is an example of a non-parametric model

Parametric models learn parameters from training data

Once training done, the training set not required

KNN is an instance-based learner

Chapter 3



Basic KNN algorithm

Choose k and a distance metric

Find k nearest neighbors of the sample to be classified

Assign the class label by majority vote

Chapter 3



Chapter 3



KNN advantages

Classifier immediately adapts as we receive new training
examples

But computational complexity grows linearly with the number
of samples

Need efficient data structures such as KD-trees

Distance metrics:

d
(
x(i), x(j)

)
= p

√∑
k

∣∣x (i)
k − x

(j)
k

∣∣p
Euclidean distance if we set the parameter p = 2
Manhattan distance if we set the parameter p = 1

Chapter 3


