Chapter 7

Ensemble Classifiers

August 11, 2017

Chapter 7

Learning with ensembles

Our goal is to combined multiple classifiers
Mixture of experts, e.g. 10 experts
Predictions more accurate and robust

Provide an intuition why this might work

e 6 6 o o

Simplest approach: majority voting

Chapter 7

Majority voting

@ Majority voting refers to binary setting
@ Can easily generalize to multi-class: plurality voting

@ Select class label that receives the most votes (mode)

.......... Unanimity
Q00000 /L AA My

0000 LAALILIL] Purly

Chapter 7

Combining predictions: options

@ Train m classifiers Cy,..., Cy,

@ Build ensemble using different classification algorithms (e.g.
SVM, logistic regression, etc.)

@ Use the same algorithm but fit different subsets of the
training set (e.g. random forest)

Chapter 7

General approach

Training set

=
@
3

Classification Q.

models & = e Co _ %

Predictions P P NP P

Voting
Final prediction P

Chapter 7

Combining predictions via majority voting

We have predictions of individual classifiers C; and need to select
the final class label y

y = mode{Ci(x), Ca(x), ..., Cn(x)}

For example, in a binary classification task where class; = —1 and
class, = +1, we can write the majority vote prediction as follows:

C(x) = sign [Z Cj(x)] = {1 it >3 G(x) >0

—1 otherwise

Chapter 7

Intuition why ensembles can work better

Assume that all n base classifiers have the same error rate . We
can expresss the probability of an error of an ensemble can be
expressed as a probability mass function of a binomial distribution:

n
n _
P(y > k) = Z <k> (1= €)" = €ensemble

k
Here, (Z) is the binomial coefficient n choose k. In other words, we
compute the probability that the prediction of the ensemble is

wrong.

Chapter 7

Imagine we have 11 base classifiers (n = 11) with an error rate of
0.25 (e = 0.25):

11
11
Ply>k)=> <k>o.25k(1 —0.25)117k = 0.034
k=6

So the error rate of the ensemble of n = 11 classifiers is much
lower than the error rate of the individual classifiers.

Chapter 7

Same reasoning applied to a wider range of error rates

1.0 T
— Ensemble error

o o
=) ©
T

Base/Ensemble error
o
S

0.0 0.2 0.4 0.6 0.8 1.0
Base error

Chapter 7

Voting classifier in scikit-learn

Simply instantiate several classifiers
Make a list

Pass to sklearn.ensemble.VotingClassifier(...)

e 6 o6 o

Chapter 7

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html

clfl = LogisticRegression(random_state=1)

clf2 = RandomForestClassifier(random_state=1)

clf3 = GaussianNB()

estimators=[(’1r’, clf1), (’rf’, clf2), (’gnb’, clf3)]
ens_clf = VotingClassifier(estimators)

ens_clf = eclfl.fit(X, y)

Chapter 7

Boostrap aggregation (bagging)

We used the entire training set for the majority vote classifier
@ Here we draw bootstrap samples

@ In statistics, bootstrapping is any test or metric that relies
on random sampling with replacement.

@ Hypothesis testing: bootstrapping often used as an alternative
to statistical inference based on the assumption of a
parametric model when that assumption is in doubt

@ The basic idea of bootstrapping is that inference about a
population from sample data, can be modelled by resampling
with replacement the sample data and performing inference
about a sample from resampled data.

Chapter 7

Bagging

Training set
Bootstrap T T
| R S L m |
samples T,
\ l / / z
L |2
Classification]
models & < Cm s
—t
b } } L
Predictions P, P, e P
Voting
v
Final prediction P;

Chapter 7

Boostrapping example

Sample Bagging Bagging

indices round 1 round 2

N o |u|s|w N

[[&|N|N|w |~ |N
N N[k [N |w

@ Seven training examples
@ Sample randomly with replacement

@ Use each boostrap sample to train a classifier C;

o C; is typically a decision tree

o Random Forests: also use random feature subsets

Chapter 7

Bagging in scikit-learn

Instantiate a decision tree classifier
Make a bagging classifier with decision trees

°
°
@ Check that the accuracy is higher for the bagging classifier
°

Chapter 7

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch07/ch07.ipynb

@ Basic idea: start with weak learners that have only a slight
performance advantage over random guessing (e.g. a decision
tree stump) and try to boost their performance by focusing on
training samples that are hard to classify

@ Very simple base classifiers learn from misclassified training
examples

@ The original boosting algorithm was formulated by Robert
Schapire in 1990

@ It was later refined into AdaBoost

e AdaBoost (short for Adaptive Boosting) is the most common
implementation of boosting

Chapter 7

Original boosting algorithm

@ Draw a random subset of training samples d; without
replacement from the training set D to train a weak learner C;

@ Draw second random training subset d, without replacement
from the training set and add 50 percent of the samples that
were previously misclassified to train a weak learner G,

© Find the training samples ds in the training set D on which
G and (G, disagree to train a third weak learner C3

@ Combine the weak learners C;, G5, and (3 via majority voting

Chapter 7

@ In contrast, AdaBoost uses the complete training set to train
the weak learners

@ Training samples are reweighted in each iteration to build a
strong classifier

@ End goal is to build a strong classifier that learns from the
mistakes of the previous weak learners in the ensemble

Chapter 7

AdaBoost algorithm

@ Set weight vector w to uniform weights where >, w; = 1.
@ For j in m boosting rounds, do the following:

Train a weighted weak learner: C; = train(X,y,w).
Predict class labels: y = predict(Cj, X).

Compute the weighted error rate: e = w - (§ # y).
Compute the coefficient a;: o = 0.5log 1=<.
Update the weights: w:=w X exp (—a; x § x y).
Normalize weights to sum to 1: w:=w/>", w;.

000000

© Compute the final prediction:
¥= (27" (o x predict(C;, X)) > 0).

Notes: For clarity, we will denote element-wise multiplication by the cross symbol (x)
and the dot product between two vectors by a dot symbol (-), respectively. Note that
the expression (§ ==y) in step 5 refers to a vector of 1s and Os, where a 1 is assigned
if the prediction is incorrect and 0 is assigned otherwise.

Chapter 7

