Chapter 3

A Tour of Machine Learning Classifiers Using Scikit-learn

October 7, 2021

Chapter 3

Choosing a classification algorithm

e No classifier works best across all scenarios (“no free lunch”
theorem)

@ Always need to consider the specifics of the problem
@ Solving a problem within supervised ML framework:
@ Select features
@ Choose performance metrics
@ Choose classifier and optimization algorithm
@ Evaluate performance of the model
© Tune the classifier

Chapter 3

Perceptron implementation

Chapter 3

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch03/ch03.ipynb

Modeling class probabilities

@ What happens if the classes are not linearly separable?

@ Weights never stop updating as long as there is at least one
misclassified example in each epoch

@ Logistic regression is a better option

@ Note that despite the name this is a classification model

Chapter 3

Logistic regression model

@ This is a "go to” model for classification

@ Designed for binary classification but can be extended to
multiclass

@ Odds ratio
p

(1-p)
Where p is the probability of the positive class (class label

y =1). E.g. the probability that a patient has a certain
disease.

o Logit function

logit(p) = log T

Chapter 3

Logit function

6 —f(x):log—l’i—x ‘

4

2

0 0.2 : 06 08 10
-2

-4

-6

@ Mathematically, the logit function is the inverse of the logistic
function

@ An inverse function is a function that 'reverses’ another
function

@ l.e. if the function f applied to an input x gives a result of y,
then applying its inverse function g to y gives the result x

Chapter 3

Modeling logit function

@ We model the logit function as a linear combination of
features (dot product of feature values and weights)

m
logit(p(y = 1|x)) = woxo+wixi+- - -+ WmXm = Z wix; = wx.
i=0

Where p(y = 1|x) s the conditional probability that a
particular sample belongs to class 1 given its features x

@ This is equivalent to expressing p as

1

ply =1|x) = 11 ewx

Chapter 3

Logistic Sigmoid

@ Logistic function (aka sigmoid function)

1
Z) =
o) = 1o
@ S-shaped curve
1.0}
Tost
0.0+
8 6 ~4 -2 0 2 4 6 8

Chapter 3

Relationship with Adaline

@ In Adaline, we used the identify function as the activation
function

@ In logistic regression, we instead use the sigmoid function

D

Net input Sigmoid Quantizer
function function

Chapter 3

Probability distribution over classes

@ Output of the sigmoid often interpreted as probability
e Eg. P(y=1/|x;w)=0.8

@ Probability can be converted to a binary outcome (quantizer)

P {1 if 9(z) > 0.5

0 otherwise

@ Which is equivalent to the following

.)1 if z>0.0
Y= 0 otherwise

e For many applications (e.g. weather forecasting), we want the
probability

Chapter 3

Learning the weights

@ Previously we minimized the sum-squared-error cost function

1 i i ?
@ Now we need to derive the cost function for logistic regression
@ Define the likelihood L

L(w) = P(y|x; w) H P(y (1))

Lw) =TI <¢(zm)>y (1- ¢(zm)> 1o

Chapter 3

Log-likelihood function

@ Maximize the likelihood function

L(w) = P(ylx; w)
i)

n n y(:
tw) = [P w) =TT (o))

i=1

<1—¢>(Z(i>)>1yw

@ In practice easier to deal with the natural log of this equation

I(w) = log L(w)

) Z [y(;) g <¢(Z<;))) n <1_y(i>> log <1—¢(z(i)))]

i=1

o Easier to take derivative + fewer numerical underflow issues

Chapter 3

Cost function

@ Rewrite likelihood as a cost function

D ON D)

i=1

@ Can now be minimized using gradient descent

Chapter 3

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch03/ch03.ipynb

Weight update derivation

Calculate the partial derivative of the log-likelihood function with
respect to the jth weight:

0 1 1 0
aTVJ_I(W) = <y¢(z) -(1- y)l—gt(z)) 87‘/}}?(2)

Partial derivative of the sigmoid function:

0 =21 1 1o 1
—_— Z) = — = = —
0z 0z1+ et (1+ e—z)2 14+e2 14+e2

= #(2)(1 = ¢(2))-

Chapter 3

Weight update derivation

Resubstitute 2 ¢(z) = ¢(z)(1 — ¢(z)) to obtain:

Chapter 3

@ Sometimes model performs well on training data but does not
generalize well to unseen data (test data)

o This is overfitting

If a model suffers from overfitting, the model has a high
variance

This is often caused by a model that's too complex
Underfitting can also occur (high bias)

Underfitting is caused by a model’s not being complex enough

Both suffer from low performance on unseen data

Chapter 3

Bias-variance tradeo

37
Bias-Variance Examples
High bias , , Low bias
. 1 . .
Low variance il I\ Highvariance
1 [}
Y e Yy [L . n
° . -~ ¥ i L
2- A e * r
° .. ,”.'. L4 :' ° \e s ,*\\ r.
B T gy
L ol Y R
& ° = H V)
Y |
vl X

X v

Good bias-variance trade-off

Y
~2.__ ¢
- LT 2 8
o ~e_
'Y Here the red circles represent
5 training data and the blue curves
i are models fitted to the data
7
X
UClIrvine)
(S —

Regularization

Regularization: adding information in order to solve an ill-posed
problem or to prevent overfitting. An example of an ill-posed
problem is a problem where the solution does not exist or is not

unique.
X, \ X, L, X,
o o’ o
d\ + [e) Il+ 9 ‘I:I-
oo‘}:'.,. 00'\++ 02, +

+ N+ +% 4 T+

o A (o] \os . b""b\‘ R
Underfitting %1 Good X1 Overfitting %1
(high bias) compromise (high variance)

@ Regularization is a way to tune the complexity of the model
@ Regularization helps to filter out noise from training data

@ As a result, regularization prevents overfitting

Chapter 3

L2 regularization

The most common form of regularization is the so-called L2
regularization (sometimes also called L2 shrinkage or weight

decay):
A2 - A 2
§||WH = EZWJ'

Where A is the so-called regularization parameter. To apply
regularization, we add the regularization term to the cost function,
which shrinks the weights (adding a zero mean gaussian prior over
the weights):

n

Jw) =) [—y(’) log (¢(27)) - (1-y") log (1—¢(2(")) +%Hw||2

i=1

Chapter 3

Weight decay

Note that the derivative of w? with respect to w is 2w, so:

oJ
8W,'

Wj = W — 15— — NAw;

The new term (nAw;) coming from the regularization causes the
weight to decay in proportion to its size.

Chapter 3

Regularization parameter

@ We control how well we fit the training data via the
regularization parameter A

@ By increasing A, we increase the strength of regularization
e Sometimes (e.g in scikit-learn), SVM terminology is used

C:X

@ l.e we rewrite the regularized cost function of logistic
regression:

C [Zn: (—y(’) log (¢(2") — (1—y(i))) log (1—¢(z('))>

i=1

1 2
+5lwl

Chapter 3

Regularization illustrated

Decreasing the value of C means increasing the regularization
strength

@ Can be visualized by plotting L2 regularization path for two
weights

Display weights across multiple C values

As you see, weights shrink to zero as C decreased

Chapter 3

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch03/ch03.ipynb

Support Vector Machines

@ In SVMs, the optimization objective is to maximize the
margin

@ The margin is defined as the distance between the separating
hyperlane and the training samples that are closest to this
hyperplane (support vectors)

@ Intuitively, the larger the margin, the lower generalization error

@ Models with small margin prone to overfitting

Chapter 3

Maximum margin classification

Margin
Support vectors
X2 1 X,
v
\\ ! Decision boundary
N . ‘1\" + 4 wix=0
~ Iy +
PNt 4 —
° N ‘\ “negative” positive
0o OI' Y hyperplane hyperplane
R —> wix=-1 N wix=1
Xy X

SVM:

Which hyperplane? Maximize the margin

Chapter 3

Mathematical intuition

Positive and negative hyperplanes that are parallel to the decision
boundary, which can be expressed as follows:

wp + wapos =1

wy + waneg =-1
Distance between these two planes (prove it!), i.e. the margin:

2
[[wl]

Where the length of the vector w is defined as follows:

Chapter 3

Constrained optimization problem

Minimize:)
S lwl?

Subject to constraints that the samples are classified correctly:
wo +wx() >1if y(i) =1
wo +w'x) < —1if y() = —1

These equations say that all negative and positive samples should
fall respectively on one side of the negative and positive
hyperplanes. This can be written more compactly:

y(i)(Wo +WTX(i)) >1 Vv

Chapter 3

SVM Solution

Classsifier
f(x) = sgn(w’x + wp)

Weights

N
w = E QYiX;
i=1

Chapter 3

Slack variables / soft margin SVM

$
X1
slack variable:
&
Ww-X+b=-1 Wersb=1 Allow some instances 1o
- fall off the margin, but
% ‘\ penalize them
-
w
X2
w-x+hb=0

Source: http://www.saedsayad.com/support_vector_-machine.htm

Chapter 3

Extending SVM to non-linearly separable cases

Need to relax the linear constraints

To ensure convergence in presense of misclassifications

Introduce slack variables &
wix) >1—¢0if () =1
wix() < 140 if () = 1

New objective to be minimized:

Sz + (3 e0)

Chapter 3

Regularization in SVMs

SIwi?+ (S0 0)

Large values of C - large error penalties
Small values of C - less strict about misclassifications

Parameter C controls width of the margin

l.e. C is a way to do regularization in SVMs

Chapter 3

Regularization in SVMs

X2 A :
I +
1
o | Tt
vy
o | +
1
el o |
=
Large value for Small value for
parameter C parameter C

Chapter 3

Exclusive OR (XOR) linear separability

2 XOR
i X1 X2 Y
| 0 0 0
| 0 1 1
X2 1 P, ® = L
i T 1 1 0
- “-‘hk‘“
M
0 @ -
0 1 2
X1

Source: http://www.saedsayad.com/artificial_neural_network_bkp.htm

Chapter 3

Generated XOR data

@ Kernel methods create non-linear combinations of the original
features

@ Project onto a higher dimensional space where they are
separable

e Mapping function ¢(-)

o(x1,%) = (21,22, 23) = (x1, %2, X + x3)

Chapter 3

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch03/ch03.ipynb

Turn non-separable classess are separable

1
2.0
10
15
o 10
z
00 d) 3
b — 05
-05 & 0.0
Lo — —0.5
T
-131.005¢9 \\"—'/g;()o 051015
a 00510 15-151.005%
215 -0 05 00 05 10 15 Zy 1
X
1
¢
1
10 RS
b
0s P -
-
XZ 0.0 _. .
ol
e AEEELS e
i T a—— 05 10 15

Kernel trick

General blueprint:

@ Transform training data into a higher dimensional space via a
mapping function ¢(+)

@ Train a linear SVM to classify the data in the new feature
space

@ Use the same mapping function ¢(-) to transform new
(unseen) data

@ Classify unseen data using the linear SVM model

Chapter 3

Problem with explicit mapping

@ The construction of the new features is computationally
expensive

@ Fortunately, we have the kernel trick
@ Decision boundary relies on dot products in input space

@ Need to replace the dot product
I. . i T .
x() Tx() by ¢(x()) ¢(X(J))

@ No need to calculate this dot product explicitly

@ Instead, we define a kernel function:

k(x, 1) = gb(x(i))Tqb(x(j))

Chapter 3

Kernel Trick: Example

x = (x1,%), z= (z1,22), K(x,2) = (x-2)?

K(x,z) = (x1z1 + x022)? = (X322 + 2x121%020 + x323) =

= (4, Ve, §) - (2, V2a122, 23)) = (6(x)9(2))

Chapter 3

RBF Kernel

One of the most widely used kernels is the Radial Basis Function
kernel (RBF kernel) or Gaussian kernel:

N () — x0)|2
K 10) = exp < . H\)

202
This is often simplified to:
K(xD,x0) = exp (o xO - x(j)||2)

Here, v = 2%2 is a free parameter that is to be optimized.

Chapter 3

@ The term kernel can be interpreted as a similarity function
between a pair of samples

@ The minus sign inverts the distance measure into a similarity
score (from 0/dissimilar to 1/very similar)

Use RBF kernel to separate XOR data
Vary the v parameter

Chapter 3

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch03/ch03.ipynb

K-nearest neighbors

KNN is an example of a non-parametric model
Parametric models learn parameters from training data

Once training done, the training set not required

KNN is an instance-based learner

Chapter 3

Basic KNN algorithm

@ Choose k and a distance metric
@ Find k nearest neighbors of the sample to be classified

@ Assign the class label by majority vote

Chapter 3

Chapter 3

KNN advantages

o Classifier immediately adapts as we receive new training
examples

@ But computational complexity grows linearly with the number
of samples

@ Need efficient data structures such as KD-trees

Distance metrics:
d(x), x1)) = (/Z WORNTIE
k

Euclidean distance if we set the parameter p = 2
Manhattan distance if we set the parameter p =1

Chapter 3

