
Chapter 12
Artificial Neural Networks

November 26, 2019

Chapter 12



Deep learning

Big in ML

Set of algorithms to train neural networks

Python libraries available

Outline

Forward propagation in ANNs
Backpropagation to learn the parameters
Debugging ANNs
Alternative architectures (CNN, RNN)

Chapter 12



Single neuron review

Chapter 12



Adaline review

Perceptron

Update all weights, then recompute ŷ
Weight update done after seeing each sample

∆wj = η

(
y (i) − ŷ (i)

)
x

(i)
j

Adaline

Weight update done after entire training set has been seen
In every epoch, update all weights as follows:

w := w + ∆w, where ∆w = −η∇J(w)

I.e. compute the gradient based on all samples in the training
set (this is known as batch gradient descent)
SGD updates after seeing n samples
Mini-batch: middle ground bewteen SGD and batch GD

Chapter 12



Weight update details

Partial derivative for each weight wj in the weight vector w:

∂

∂wj
J(w) =

∑
i

(
y (i) − a(i)

)
x

(i)
j

Here y (i) is the target class label of a particular sample x (i), and
a(i) is the activation of the neuron, which is a linear function in the
case of Adaline: Remember that we defined the activation function
φ(·) as follows:

φ(z) = z = a

Here, the net input z is a linear combination of the weights that
are connecting the input to the output layer:

z =
∑
j

wjxj = wTx

Chapter 12



Multi-layer feedforward neural network

Chapter 12



Notation

We denote the ith activation unit in the lth layer as a
(l)
i

The activation units a
(1)
0 and a

(2)
0 are the bias units,

respectively, which we set equal to 1

The activation of the units in the input layer:

a(i) =


a

(1)
0

a
(1)
1
...

a
(1)
m

 =


1

x
(i)
1
...

x
(i)
m


The connection between the kth unit in layer l to the jth unit

in layer l + 1 written as w
(l)
j ,k

Chapter 12



Notation summary

Chapter 12



MLP learning procedure

1 Starting at the input layer, forward propagate x(i)

2 Calculate the error that we will want to minimize

3 Find its derivative with respect to each weight

4 Update the weights

Chapter 12



Forward propagation

1 Assume, input has m dimensions

2 Compute the net input a
(2)
1 for unit 1 in the hidden layer:

z
(2)
1 = a

(1)
0 w

(1)
1,0 + a

(1)
1 w

(1)
1,1 + · · ·+ a

(1)
m w

(1)
l ,m

3 Compute the activation for unit 1 in the hidden layer:

a
(2)
1 = φ

(
z

(2)
1

)
4 Here φ(·) is the activation function

5 Logistic sigmoid is often used:

φ(z) =
1

1 + e−z
.

Chapter 12



Sigmoid function

Chapter 12



Vectorized notation

Write activation in a matrix form

Readability + more efficient code

Net inputs for the hidden layer:

z(2) = W(1)a(1)

Dimensions (ignoring bias units for simplicity)

[h × 1] = [h ×m][m × 1]

Activations for the hidden layer:

a(2) = φ
(
z(2)
)

Chapter 12



Matrix notation

Generalize computation to all n samples in the training set

Z(2) = W(1)
[
A(1)

]T
Matrix dimensions

[h × n] = [h ×m][n ×m]T

Activation matrix
A(2) = φ

(
Z(2)

)
Now activation of the output layer

Z(3) = W(2)A(2)

Matrix dimensions

[t × n] = [t × h][h × n]

Output of the network

A(3) = φ
(
Z(3)

)
, A(3) ∈ Rt×n.

Chapter 12



Cost function

The logistic Cost function is the same we used for logistic
regression:

J(w) = −
n∑

i=1

y (i) log
(
a(i)
)

+
(
1− y (i)

)
log
(
1− a(i)

)
Here, a(i) is the sigmoid activation of the ith unit a(i) = φ

(
z(i)
)
.

Regularization:

L2 = λ‖w‖2
2 = λ

m∑
j=1

w2
j

J(w) = −

[
n∑

i=1

y (i) log
(
a(i)
)

+
(
1− y (i)

)
log
(
1− a(i)

)]
+
λ

2
‖w‖2

2

Chapter 12



Cost function for all units in output layer

The activation of the third layer and the target class could be:

a(3) =


0.1
0.9

...
0.3

 , y =


0
1
...
0


So, we need to generalize the logistic cost function to all activation
units j in our network. The cost function (without the
regularization term) becomes:

J(w) = −
n∑

i=1

t∑
j=1

y
(i)
j log(a

(i)
j ) + (1− y

(i)
j ) log(1− a

(i)
j )

Superscript i is the index of a particular sample in training set

Chapter 12



Cost function for the entire network

Sum all the weights in the entire network in the regularization term:

J(w) = −

[
n∑

i=1

m∑
j=1

y
(i)
j log

(
φ
(
z

(i)
j

))
+
(

1−y (i)
j

)
log

(
1−φ

(
z

(i)
j

))]
+

+
λ

2

L−1∑
l=1

ul∑
i=1

ul+1∑
j=1

(
w

(l)
j ,i

)2

The following expression represents the L2-penalty term:

λ

2

L−1∑
l=1

ul∑
i=1

ul+1∑
j=1

(
w

(l)
j ,i

)2

Chapter 12



Minimizing the cost function

We want to minimize the cost function J(w), so we calculate the
partial derivative with respect to each weight for every layer in the
network:

∂J(W)

∂w
(l)
j ,i

Chapter 12



Keras and PyTorch

Deep Learngin with Python GitHub

IMDB classification example

PyTorch example

Chapter 12

https://github.com/fchollet/deep-learning-with-python-notebooks
https://nbviewer.jupyter.org/github/fchollet/deep-learning-with-python-notebooks/blob/master/3.5-classifying-movie-reviews.ipynb
https://towardsdatascience.com/understanding-pytorch-with-an-example-a-step-by-step-tutorial-81fc5f8c4e8e

