Chapter 5

Dimensionality Reduction

October 22, 2017

- Find the directions of maximum variance
- Project data onto the lower-dimensional space
- Original features: x_{1} and x_{2}
- Principal components: PC1 and PC2

Mapping to a low-dimensional space

When we use PCA for dimensionality reduction, we construct a $d \times k$ transformation matrix \mathbf{W}. We then map a sample vector \mathbf{x} onto a new k-dimensional feature subspace $(k \ll d)$

$$
\begin{aligned}
\mathbf{x}= & {\left[x_{1}, x_{2}, \ldots, x_{j}\right], \mathbf{x} \in \mathbb{R}^{d} } \\
& \downarrow \mathbf{x W}, \quad \mathbf{W} \in \mathbb{R}^{d \times k} \\
\mathbf{z}= & {\left[z_{1}, z_{2}, \ldots, z_{k}\right], \quad \mathbf{z} \in \mathbb{R}^{k} }
\end{aligned}
$$

Principal components

- Transforming d-dimensional data to k dimensions
- First principal component will have the largest variance
- Second principal component will have next largest variance
- And so on...
- PCA sensitive to data scaling, so need to standardize features

Algorithm

(1) Standardize the d-dimensional dataset.
(2) Construct the covariance matrix.
(3) Decompose the covariance matrix into its eigenvectors and eigenvalues.
(1) Select k eigenvectors that correspond to the k largest eigenvalues, where k is the dimensionality of the new feature subspace ($k \leq d$).
(5) Construct a projection matrix \mathbf{W} from the "top" k eigenvectors.
(0) Transform the d-dimensional input dataset \mathbf{X} using the projection matrix \mathbf{W} to obtain the new k-dimensional feature subspace.

Variance-covariance matrix

- Symmetric $d \times d$-dimensional matrix (d - number of dimensions)
- Pairwise covariances between the different features
- Covariance between two features \mathbf{x}_{j} and \mathbf{x}_{k} :

$$
\sigma_{j k}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{j}^{(i)}-\mu_{j}\right)\left(x_{k}^{(i)}-\mu_{k}\right)
$$

Where μ_{j} and μ_{k} are the sample means of feature j and k

What is covariance?

- Measure of how much two random variables change together
- Positive covariance
- Features increase together
- Features decrease together
- E.g. As a balloon is blown up it gets larger in all dimensions
- Negative covariance
- Features vary in opposite directions
- Large values of one variable correspond to small values of the other
- E.g. if a sealed balloon is squashed in one dimension then it will expand in the other two
- The magnitude of the covariance is not easy to interpret
- The normalized version of covariance (correlation coefficient) indicates the strength of the linear relation.

Variance-covariance matrix

- For three features, covariance matrix will look like this:

$$
\Sigma=\left[\begin{array}{ccc}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{2}^{2} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{3}^{2}
\end{array}\right]
$$

- The eigenvectors of Σ represent the principle components
- The corresponding eigenvalues represent their magnitude
- Principle components: the directions of maximum variance
- E.g. Wine dataset (13 dimensions)
- 13×13 covariance matrix
- 13 eigenvectors
- 13 eigenvalues

Eigenpairs

- An Eigenvector v satisfies the condition:

$$
\Sigma \mathbf{v}=\lambda \mathbf{v}
$$

Where λ is the eigenvalue (scalar)

- NumPy has a function to compute eigenpairs
- We want to reduce the dimensionality
- So, we select a subset of k most informative eigenvectors

Variance explained ratio

- Variance explained ratio of an eigenvalue λ_{j} :

$$
\frac{\lambda_{j}}{\sum_{j=1}^{d} \lambda_{j}}
$$

- First two principal components explain about 60 percent of the variance in the data

Feature transformation

- We decomposed the covariance matrix into eigenpairs
- Now need to project to new space defined by principle component axes
- Construct a 13×2 projection matrix from top two eigenvectors
- Transform a sample \mathbf{x} onto the PCA subspace obtaining \mathbf{x}^{\prime}
- Which is a two-dimensional vector consisting of two new features:

$$
\mathbf{x}^{\prime}=\mathbf{x W}
$$

- Transform entire Wine dataset (124×13)

$$
\mathbf{X}^{\prime}=\mathbf{X W}
$$

Visualize Wine dataset in two dimensions

Visualize Wine dataset in two dimensions

- Can now visualize a 13-dimensional dataset
- Data more spread along first principal component, which explained 40 percent of the variance
- A linear classifier should be able to do a good job separating the classes
- Keep in mind that PCA is an unsupervised algorithm

